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Abstract
Spoken language understanding (SLU) tasks such as goal esti-
mation and intention identification from user’s commands are
essential components in spoken dialog systems. In recent years,
neural network approaches have shown great success in various
SLU tasks. However, one major difficulty of SLU is that the
annotation of collected data can be expensive. Often this results
in insufficient data being available for a task. The performance
of a neural network trained in low resource conditions is usually
inferior because of over-training. To improve the performance,
this paper investigates the use of unsupervised training methods
with large-scale corpora based on word embedding and latent
topic models to pre-train the SLU networks. In order to capture
long-term characteristics over the entire dialog, we propose a
novel Recurrent Neural Network (RNN) architecture. The pro-
posed RNN uses two sub-networks to model the different time
scales represented by word and turn sequences. The combi-
nation of pre-training and RNN gives us a 18% relative error
reduction compared to a baseline system.
Index Terms: spoken language understanding, fine-tuning, se-
mantic embedding, recurrent neural networks, goal estimation

1. Introduction
Spoken language understanding (SLU) in dialog systems ex-
tracts semantic information from the output of an automatic
speech recognizer (ASR) [1, 2]. The dialog manager (DM)
then determines the next machine action given the SLU output.
In the last decade, a variety of practical goal-oriented spoken
dialog systems have been built for different tasks [3, 4, 5, 6].
This paper focuses on two key tasks in targeted dialog and un-
derstanding applications: user intention understanding and user
goal estimation.

User intention understanding is the extraction of the in-
tended meaning (called “intention” hereafter) of one user ut-
terance, performed by the SLU module. The dialog manager
determines which action to take next based on the result of in-
tention understanding.

User goal estimation is a similar concept, but is an estima-
tion of the final system action (called “goal” hereafter) that the
user wishes to accomplish during the dialog. A dialog usually
consists of a series of user utterances and system actions, so the
goal estimation takes place over a longer time scale than user
intention understanding. The system’s estimate of the goal may
change during the dialog as more information is captured. Goal
estimation performance is important since it can facilitate the
user achieving the correct action more quickly [7].
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Intention understanding is framed as a semantic utterance
classification problem while goal estimation is framed as clas-
sification problem of an entire dialog.

Conventional intention and goal estimation approaches use
bag of word (BoW) features (or bag of intention features in goal
estimation) as inputs to standard classification methods such as
boosting, support vector machine, and logistic regression. How-
ever, one of the problems of applying BoW features to SLU
tasks is that the feature vector tends to be very sparse. Each ut-
terance only includes a dozen words at most (unlike document
analysis). Therefore, the feature vector sometimes lacks enough
semantic information to accurately estimate user intentions or
goals. This paper investigates the use of additional semantic in-
formation by using word embedding [8] and latent topic model
based on Latent Dirichlet Allocation (LDA) [9] techniques for
intention understanding and goal estimation.

This paper first applies the semantic information as input
features, and then uses them as an additional input layer in neu-
ral network architectures, by following the great success of neu-
ral network approaches in various SLU tasks. One of the most
successful neural network approaches is based on Deep belief
networks (DBNs) [10]. DBNs are stacks of Restricted Boltz-
mann Machines (RBMs), and their parameters are used as ini-
tial values when we estimate the neural network parameters by
a back propagation algorithm (see [11] for more details). In
the DBN context, the first step of finding initial parameters is
called pre-training, and the second step of discriminative net-
work training is called fine-tuning. Following the success of
DBN/DNN training in ASR and image processing, researchers
have applied other neural network architectures to SLU includ-
ing DBN/DNN [12], Deep Convex Network [13], Recurrent
Neural Network (RNN) [14, 15], and Long Short-Term Mem-
ory (LSTM) RNN [16].

However, in applying these techniques to SLU, one major
difficulty is that we often have insufficient training data for a
task, since the annotation of collected data can be expensive.
The performance of a neural network trained in low resource
conditions is usually inferior because of over-training. As men-
tioned above, our approach uses word embedding as an addi-
tional input layer of a neural network, which mitigates the over-
training problem. To accomplish this, we initialize the affine
transformation of the first layer by using a word embedding
matrix estimated from a large-scale general corpus with unsu-
pervised training methods (pre-training). Then, the entire SLU
network is trained with the annotated training data, with word
embeddings fine-tuned to the SLU task. This concept has been
studied in [14, 17]. We also propose a novel Multi-scale RNN
(MSRNN) architecture pre-trained with word embedding in or-
der to capture long-term characteristics over the entire dialog for
goal estimation. The proposed MSRNN uses two sub-networks



to model the different time scales represented by word and turn
sequences. We applied a combination of pre-training and our
proposed MSRNN network to a route guidance dialog task. The
combination gives us a 18% relative error reduction compared
to a baseline system.

2. Incorporating Semantic information
In this paper, we investigate the performance of importing se-
mantic text embeddings to our SLU tasks. Two kinds of seman-
tic features are trained in unsupervised fashion using large-scale
web data. One is a word-level embedding which learns contex-
tual information about word sequences by a feed-forward neural
network frame. The other is document-level topic embedding,
which models the latent topic information of a given sentence
or article. The two kinds of semantic features have respective
advantages: word-level embedding captures local contextual in-
formation, while topic embedding capture the statistics of the
corpus, and thus provides more global information.

2.1. Word embedding

Many current NLP systems use a bag-of-words or one-hot
word vector as an input, which leads to feature vectors of ex-
tremely large dimension. An alternative is a word embedding,
which projects the large sparse word feature vector into a low-
dimensional, dense vector representation.

There are two main model families for learning word vec-
tors: 1) matrix factorization methods, such as latent semantic
analysis (LSA) [18] and LR-MVL [19] and 2) neural network
language model (NNLM) based methods, which model on local
context window, such as Continuous Bag of Words (CBOW),
Skip-gram [8] and others [20, 21]. Most word vector methods
rely on the distance or angle between pairs of word vectors as
the primary method for evaluating the intrinsic quality of word
representations. Mikolov et al. [22] introduced an evaluation
scheme based on word analogies, which favors models that pro-
duce dimensions of meaning. Among all the methods, CBOW
and Skip-gram are the current state-of-the-art for the word anal-
ogy task. CBOW predicts the current word based on the con-
text, and the Skip-gram predicts surrounding words given the
current word. Mikolov’s toolkit ’word2vec’ which implement
Skip-gram and CBOW can train on large-scale corpora very ef-
ficiently. Therefore, in this paper, we used word2vec to train
Skip-gram and CBOW on a large scale web corpus collected
from the internet and chose the embedding that gave the best
SLU performance.

The typical word usage in our route guidance task differs
from web texts, so we expected that fine-tuning of the word
embedding would yield additional performance improvements
by adapting the word embedding model to our target task.

2.2. Latent topic models

Latent topic models are algorithms that can discover semantic
information from a collection of documents. Topic embedding,
widely used in information retrieval, treats a document as a mix-
ture of topics and uses a vector to represent the topic distribu-
tion. Classic latent topic models that have been used for SLU
include Probabilistic Latent Semantic Analysis (PLSA) [23],
LDA [9], Correlated Topic Model (CTM) [24] and Pachinko
Allocation Model (PAM) [25]) all of which use Bayesian infer-
ence to compute the distribution of latent topics. Most latent
variable models are generative models, which therefore can be
used in unsupervised fashion.

Our framework uses LDA, which models each sentence or
document as a mixture of proportions for latent components by
using a Dirichlet prior. LDA has great performance on large-
scale corpus and can be trained efficiently [26]. However, since
LDA embedding is obtained an iterative inference algorithm
(variational EM) or sampling method, it is hard to fine-tune an
LDA embedding within a neural network framework. There-
fore, in this paper, we do not fine-tune LDA features. It could
be possible to use a deep unfolding method to fine-tune the LDA
inference, such as that presented in [27].

3. Fine-tuning of linear input networks
The baseline method uses a discriminative approach to repre-
sent the goal and intention estimation models, and we can flexi-
bly incorporate various information via feature engineering. We
use multivariate logistic regression to computeP (g|X) for clas-
sification target g and feature vector X as

P (g|X) = softmax([WX]g) (1)

where [Y ]g means a g-th raw element of vector Y . The softmax
function is defined as follows

softmax(zm) ,
ezm∑

k exp(e
zk )

(2)

W is a weight matrix to be estimated at the training step. For
intention prediction, X is a bag-of-words feature vector, and
g is an intention category. For the goal estimation task, X is
a bag-of-intentions including confidence scores for each pre-
dicted intention in the dialog history, and g is a goal category.
The baseline model can be regarded as a shallow neural net-
work, with only one input layer and one softmax output layer.

In order to import a word2vec embedding to the system,
we begin by purely concatenating embeddingXw with baseline
feature Xb, i.e.,

X = [X>b , X
>
w ]> (3)

Then for each turn or sentence, Xw is obtained by summing
over normalized word2vec feature for each word in the turn or
sentence:

Xw =
∑

i∈{1..T}

Xw(i)

||Xw(i)||
(4)

where T is the number of words in the sentence or turn. Xw(i)
is word2vec feature for the i-th word in the input sequence pre-
trained by large web corpus.

Then we propose two structures of fine-tuning. One is a
feed-forward structure, which we use to fine-tune the affine
transformation obtained from the word2vec embedding. This is
equal to adding a linear layer to the shallow baseline network.
Since LDA uses the expectation-maximization (EM) algorithm
to learn latent embeddings, it is hard to use an affine transforma-
tion to fine-tune LDA. Therefore we do not fine-tune the LDA
features. Experiments shows that importing LDA features can
improve performance on low-resource datasets.

The other method is to use MSRNN for different time scale
inputs. We apply MSRNN to goal estimation which uses both
the ASR result and the predicted intention as input. The affine
transformation from the word2vec embedding can be fine-tuned
during training of the RNN.

3.1. Feed-forward architecture

The feed-forward architecture changes the baseline structure by
adding a linear hidden layer between the Bag-of-Words input



Figure 1: Feed-forward architecture

layer and the output layer (as Figure 1). The posterior proba-
bility of the goal/intention given the input features is calculated
through softmax:

p(g|X) = softmax([W [X>I , X
>
w ]>]g) (5)

where

Xw = φXBOW (6)

XBOW is a Bag-of-Words vector of the input utterance
with dimension of vocabulary size V . φ is a word embedding
matrix initially learned from word2vec with dimensions n×V ,
where n is the dimension of the word embedding. Eq. 6 is an
affine transformation. W is the weight matrix between hidden
layer and output layer. Fine-tuning is achieved by updating φ
together with W . XI is a vector with dimension of the number
of intention categories, obtained by summing over the N-best
intention confidence score. (The same XI is used in the base-
line method). We also tried a non-linear transformation using
softmax function, but the result was not as good as the affine
transformation.

The feed-forward architecture gives us flexibility in adjust-
ing to the task domain, and in fact gives a better result than pure
feature concatenation.

3.2. Multi-scale recurrent neural network (MSRNN)

As mentioned above, the goal estimation task has two input se-
quences for each sample: a word sequence and an intention se-
quence with confidence score. The two sequences have differ-
ent time scales. However, the baseline architecture treats word
input as bag-of-words, which ignores the contextual informa-
tion of the input. Both input sequences, word and intention,
contain contextual information, and intuitively a system that
captures this information may perform better than one which
does not. Therefore, we propose MSRNN architecture to model
the different time scales represented by word and intention se-
quences, shown in Figure 2. The upper half of this figure rep-
resents the short time scale RNN, which accepts feature vectors
for words in all history utterances, as an entire sequence. The
lower half of the figure represents the long time scale RNN,
which accepts a single intention feature vector for each utter-
ance, and use all intentions in history as a sequence. The up-
per RNN has longer sequence than lower RNN. The two RNN
structures have different parameters and are jointly trained. The
goal is predicted at the end of each turn, the last layer of word
sequence and last layer of intention sequence are concaternated
to predict the output layer (goal of the current turn).

Figure 2: MSRNN architecture

This proposed architecture is formulated as follows:

p(g|X, I) = softmax([W [hw(T )
>, hI(M)>]>]g) (7)

where, X = {X(1), X(2), ..., X(T )} and I =
{I(1), I(2), ..., I(M)}, T and M are the lengths of word
sequence and intention sequence respectively. X(t) is one-hot
word vector. I(m) is intention vector for mth utterance with
N-best confidence scores on corresponding dimensions and the
rest dimensions set to 0. hw(T ) and hI(M) are the hidden
activation vectors at T and M , which are explained below.

The recurrent module of word sequence and intention se-
quence can be calculated as:

hw(t) = sigmoid(X(t)φw + hw(t− 1)Ww) (8)

hI(m) = sigmoid(I(m)φI + hI(m− 1)WI) (9)

and, we use the sigmoid function at the hidden layer defined as:

sigmoid(x) =
1

1 + e−x
(10)

φw and φI are weight matrices between the raw input and
the hidden nodes. φw is initialized by a word embedding matrix,
and the back propagation through time is used to fine-tune φw.
Ww and WI are weight matrices between context nodes and
hidden nodes. φI , Ww and WI are randomly initialized.

4. Experiments
We built and tested models using data from a Japanese route
guidance spoken dialog system. We used a 1.8G Japanese web
text corpus from the Internet to train word2vec, and the full
Japanese Wikipedia (900k documents) to train LDA. Combina-
tion of 50, 100, 150, and 300 word2vec dimensions, and 50, 100
LDA dimensions were tested. The dimensionality with the best
result was selected. All text was tokenized and morpholized
first by a Japanese morpholizer, chasen [28]. For each word,
we use the word, pronunciation, and part of speech as individ-
ual token elements. Each token is in Word+Pronunciation+POS
format. For both Japanese web data and Wikipedia data, low
frequency words (frequency < 5) are replaced by UNKNOWN
token. The total reduced vocabulary is around 150k.

4.1. Intention understanding

We evaluated the performance of fine-tuning on the intention
understanding task. We collected a database of Japanese ut-
terances in an automobile scenario with annotated intentions,



Table 1: Average error rate for intention prediction task, (ft) means with fine-tuning
Dev (%) Test (%)

Baseline (Bag-of-Words) 15.7 15.9
BoW + word2vec 13.0 13.5

BoW + word2vec (ft) 12.4 12.3

Table 2: Average error rate for goal estimation task, (ft) means with fine-tuning
Dev (%) Test (%)

Baseline (intention only) 18.9 19.5
intention (100 dim) + word2vec (50 dim) 17.2 17.5

intention (100 dim) + word2vec (50 dim + ft) 16.0 16.1
intention (100 dim) + word2vec (50 dim + ft) + LDA (50) 16.0 16.2

MSRNN 16.2 16.6
MSRNN (ft) 15.6 15.9

which contains 39,328 training samples, 5,000 dev samples and
5,000 test samples. The number of intention categories is 562,
and the vocabulary size is 3,602. The text for intention under-
standing is first processed by slot filling. For example:

Before slot filling: Show flights from Boston to New York
today

After slot filling: Show flights from<City-departure> to
<City-arrival> today

Intention: find flight

Boston is replaced by <City-departure> and New York is re-
placed by <City-arrival>. In the baseline system, slots are
treated equally as words. Each sentence is represented as
a Bag-of-Words feature vector. We tested the performance
of word2vec features by concatenating the 300-dimensional
word2vec features with the Bag-of-Words features as described
in Equations 3 and 4, and additionally tested the system both
with and without fine-tuning.

The experimental results are shown in Table 1. By using
the word2vec features, the performance was improved from the
baseline system by 2.7% (dev.) and 2.4% (eval) (absolute re-
duction in error). With the fine-tuning, the performance further
improves to 3.3% (dev.) and 3.6% (eval), absolutely. This re-
sult confirms the effectiveness of fine-tuning for our intention
understanding task.

4.2. Goal estimation

We collected a dataset from a Japanese rule-based spoken dialog
system, which contain 7059 turns in total. The log data contains
the Japanese ASR results, system prompts, estimated N-best in-
tentions, system actions, and an annotated goal for each turn.
The intention vector consists of a sparse vector concaternated
by N-best intentions (545 dimensions) and N-best system ac-
tions (545 dimensions). The dimension for user intention and
system action together is 1090, the dimension for goal is 544
in total. Since the data size was very limited, we split the data
into 4 folds, 3/4 used for training, 1/8 for validation and 1/8
for test respectively. To evaluate the performance of our pro-
posed approaches, we used the average accuracy across the 4
folds. We compared the result of using embeddings alone ver-
sus embeddings with fine-tuning. In the RNN architecture, hid-
den layer sizes of 100, 200 and 300 for the intention RNN mod-
ule were trained and the one with best result was selected (100
for both with and without fine tuning). The model was trained
by stochastic gradient descent.

We observe from Table 2 that importing semantic text fea-
tures gives a better performance than using intention features
alone. The best performance occurs on smaller semantic em-
bedding dimensions and smaller hidden layer dimensions. The
reason for this is due to the limited data size, for which fine-
tuning high dimensional embeddings could lead to over-training
problems.

Fine-tuning word embeddings improves upon the feature
engineering results by a small but consistent margin. The first
four rows of the table are implemented by the feed-forward
structure and the last two rows are implemented by the MSRNN
structure. Among all the feed-forward structures, fine-tuning
word2vec plus LDA features gives the best result with 2.9%
(dev.) and 3.3% (eval.) absolute improvement from the base-
line. The MSRNN structure itself (without fine-tuning) already
gives a significant performance improvement over simply im-
porting semantic text features. When we add fine-tuning to
the MSRNN training, we get the best overall result of 3.3%
(dev.) and 3.6% (eval.) absolute improvement from the base-
line. This proves that modeling time sequential input by using
our MSRNN architecture with different time scales gives a gain
to the system.

5. Conclusion
We propose an architecture for efficient learning for low re-
source SLU tasks. We pre-train a word embedding in an un-
supervised way and fine-tune it for our specific SLU task. In
order to capture long-term characteristics over an entire dia-
log, we implement a novel Multi-scale RNN structure which
uses two sub-networks to model different time scales repre-
sented by word and intention sequences. We evaluated the per-
formance of importing semantic features, fine-tuning by feed-
forward neural network and MSRNN structure. All three meth-
ods improve SLU accuracy. The MSRNN architecture out-
performs the feed-forward structure and gives the best overall
result which improves the goal estimation baseline by 3.6%.
The first part of future work will focus on extending the pro-
posed neural network architecture to deal with more advanced
recurrent architecture, e.g., LSTM [16, 29] to capture the se-
quential information in the dialog more precisely. Then sen-
tence level embeddings that are successfully used in sentiment
and topic classification will be used and adapted to our SLU
task.
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